matika
dag | 11.10.2009 23:09:38
Chválim nápad.. fakt super :) chyba mi tu vysokoskolska matika matice a podobne dalo by sa to niako doplniť? som ochotný pomôcť..
Matematika
jksdf | 10.10.2009 23:12:24
konečne dačo normálne, ide do obľúbených, kebyže dačo také rátame aj v škole
diky za pomoc
kevin priklad o hubach | 06.10.2009 21:34:00
dakujem ti velmi pekne uvidim ci to zajtra bude dobre ale myslim ze hej
este raz diky
Hubárovi
Ado | 06.10.2009 20:21:28
Hubár nazbieral 1,8 kg hub, to je 180 dag hub. Ususenim sa vyparilo 180-15=165 dag vody; v ususenych este 10% ostalo, to je 1,5 dag vody; teda 180 dag cerstvych hub obsahovalo 165+1,5=166,5 dag vody; 166,5/180=0,925; 0,925*100%=92,5% vody. Teda cerstve huby obsahuju 92,5% vody, aspon myslim. ;-)
pomoc
kevin | 06.10.2009 18:36:27
prosim vedeli by ste mi pomoct v nasledujucum priklade???
hubar nazbieral 1.8 kg cerstvych hub
urobil z nich 15 dag susenych hub
a v tich susenych je 10 percent vody
otazka :
kolko percent vody je v cerstvych hubach
Odpoveď Jurajovi z 5.10.2009
Roman Hesteric | 06.10.2009 17:47:20 | Web
c.)
F3 = m.g.(sin alfa + f.cos alfa)
R.H.
Fyzika
Juraj | 05.10.2009 14:10:21
Zdravim potreboval by som poradit s jednym prikladom
Kocka na, ktoru posobi tiazova sila o velkosti G=80N spociva na naklonenej rovine s uhlom sklonu alfa=20°. Koeficient satatickeho trenia je fs = 0.25, koeficient dynamickeho trenia fd = 0.15
a) aka je najemnsia velkost sily F1 rovnobeznej s naklonenou rovinou, ktora zabrani kocke v sklznutiu.
b) aka je najmensia hodnota F2, pri ktorej sa zacne kocka pohybovat po naklonenej rovine hore
c) pri akej hodnote F3 bude kocka stupat stalou rychlostou
a) F1 = mg( sin alfa - fs cos alfa) = G ( sin 20° - 0.25 cos 20°) = 8.4N
ale bod b a c mi robia problem.
pri b) by to asi mohlo byt
F2 = mg( sin alfa - fd cos alfa) = 16N
ale pri bode c nemam ponatia kde zacat :-(
ANO
JEPA | 30.09.2009 19:06:18
KONECNE PORIADNA STRANKA S RIESENIM ULOH RESPECT """"!!!!
Odpoveď Mirovi z 24.9.2009
Roman Hesteric | 29.09.2009 17:10:31 | Web
Pozri na kapitolu Mniožiny
R.H.
Matematika
Tomas | 28.09.2009 22:45:50
Ahojte , som rad ze sa nasla konecne schopna stranka s matikou:) Bol by som rad keby ste pridali nove priklady , dakujem
matematika
Miro | 24.09.2009 20:03:18
Výborná stránka, musím pochváliť. Prijal by som aj nejaké príklady na Vennove diagramy s troma množinami, napr. študenti študujúci Aj,Nj,Fj a pod.
Odpoveď Jurajovi
Roman Hesteric | 23.09.2009 17:22:51 | Web
1. Interval je správny
2. x leží < Pí/12 +2kPí/3 ; 5Pí/12 +2kPí/3>
R.H.
Dakujem
Juraj | 19.09.2009 21:13:26
Dakujem pan Hesteric, chvilu som sa s tym prikladom trapil a dosiel som na to ze ta substitucia bol spravny postup len som to zle pouzil :-D. Napriek tomu by som mal dve otazky k mojej nerovnici a este tej co tu posielal Peter.
1. len pre uistenie v mojom pripade kedze sa jednalo o nerovnicu riesenim je interval <ln 3 , nekonecno)
2. k Petrovmu prikladu ... nie je tam potrebne vypocitat aj bod kde vlastne zacina byt sinus mensi ako cosinus a riesenim by bolo zjednotenie intervalov od toho pi/12 + 2kpi az po nieco + 2kpi?
RE: Peter
Roman Hesteric | 16.09.2009 14:12:00 | Web
Podobny priklad je vyrieseny v sekcii goniometricke linearne rovnice [12]
RE: Juraj
Roman Hesteric | 16.09.2009 14:09:57 | Web
Priklad je vypocitany v sekcii Exponencialne rovnice [28]
RE: Ako sa čo najrýchlejšie dostať z Európy do Austrálie
Roman Hesteric | 16.09.2009 12:18:00 | Web
Dobry den Marian,
jedenasty priklad zo sekcie Kmitanie je na odlahcenie temy. Kazdopadne je ale vyrieseny spravne.
Sem tam je mozno treba pozriet aj ine fyzikalne a matematicke weby ... napriklad teno, z <a href="http://webfyzika.fsv.cvut.cz/PDF/priklady/Mechanika_resene_7.pdf" title="CVUT"> CVUT</a>
Dakujem za Vas prispevok.
:)
Marian | 16.09.2009 09:29:36
V casti Mechanické kmitanie a vlnenie / kmitanie / Priklad c 11 (Ako sa čo najrýchlejšie dostať z Európy do Austrálie?)
Pri vypocte casu nespravne pouzivate Ludolfovo cislo. Jednoducho tam nema co robit. potom by vysledok bol 26,877 min.
Sedi to aj ked pocitam rychlost volneho padu so zrychlenim g za polovicny cas.
Este si neodpustim poznamku, ze g v tomto pripade nie je konstanta !!!
Napriek tomu Vasu stranku povazujem za prinajmensom vynimocnu !!!
matematika
Juraj | 13.09.2009 08:31:08
ale mohol by mi toto riesenie niekto kompetentny verifikovat :D
matematika
Juraj | 13.09.2009 08:27:15
Ja by som to asi podelil Cos 3x dostanes
Sin 3x / Cos 3x >= 1 { Sin x / Cos x = tg x }
tg 3x >= 1
z toho arctg(1) = pi/4
3x = pi/4 => pi/12
a kedze obe su periodicke riesenim je
pi/12 + 2kPi
matematika
Peter | 12.09.2009 15:17:46
pomooooc ako vypocitat Sin 3x >= Cos 3x