Behavior of a function

1. How do we determine the behavior of a function?

Solution:

a.)    The function y = f(x) is increasing at point x0 if f‘(x0) > 0

b.)    The function y = f(x) is decreasing at point x0 if f‘(x0) < 0

c.)    The function y = f(x) has a stationary point at x0 if f‘(x0) = 0

d.)    The function y = f(x) is convex at x0 if f‘‘(x0) > 0

e.)    The function y = f(x) is concave at x0 if f‘‘(x0) < 0

f.)    The function y = f(x) has an inflection point at x0 if f‘‘(x0) = 0 ^ f‘‘(x0) ≠ 0

g.)    The function y = f(x) has a local minimum at x0 if f‘ (x0) = 0 ^ f‘‘ (x0) > 0

h.)    The function y = f(x) has a local maximum at x0 if f‘ (x0) = 0 ^ f‘‘ (x0) < 0


2. Given the function y = x3 – 5x2 + 3x - 5. Determine for which x the function is increasing, decreasing, convex, and concave.

Solution:  

Stationary points:
y=x35x2+3x5y = x^3 - 5x^2 + 3x - 5
y=3x210x+3
3x210x+3=03x^2 - 10x + 3 = 0

3(x3)(x13)=03(x - 3)\left(x - \frac{1}{3}\right) = 0
x1=3 or x2=13x_2 = \frac{1}{3}


Increasing function:

3(x3)(x13)>0

Divide by 3:
(x3)(x13)>0

Using the sign analysis of the quadratic expression:

[x3>0 x13>0][x3<0 x13<0][x - 3 > 0 \;\wedge\; x - \tfrac{1}{3} > 0] \quad \lor \quad [x - 3 < 0 \;\wedge\; x - \tfrac{1}{3} < 0][x>3 x>13][x<3 x<13][x > 3 \;\wedge\; x > \tfrac{1}{3}] \quad \lor \quad [x < 3 \;\wedge\; x < \tfrac{1}{3}]

So:
                                                              x>3x > 3 or x<13x < \frac{1}{3}

x(,13)(3,+)x \in (-\infty, \tfrac{1}{3}) \cup (3, +\infty)

Decreasing function:

xR((,13)(3,+))=(13,3)x \in \mathbb{R} - \left( (-\infty, \tfrac{1}{3}) \cup (3, +\infty) \right) = \left( \tfrac{1}{3}, 3 \right)


Inflection point:

y=6x10y'' = 6x - 10

6x10=06x - 10 = 0

xinf=53x_{\text{inf}} = \frac{5}{3}

Convex function:

6x10>0

x>53x > \frac{5}{3}x(53,+)x \in \left(\tfrac{5}{3}, +\infty\right)

Concave function:

6x10<0

x<53x < \frac{5}{3}x(,53)x \in (-\infty, \tfrac{5}{3})

Graph 

function-behavior-2a-g


3.Check whether the function y = x3 -5x2 +3x -5 is decreasing and convex at x0 = 2.

Solution:

y = x3 -5x2 +3x -5

y‘ = 3x2 -10x +3

y‘(2) = 3·22 -10·2 +3

y‘(2) = -5 < 0

The function is decreasing.

y‘ = 3x2 -10x +3

y‘‘ = 6x - 10

y‘‘(2) = 6·2 – 10

y‘‘(2) = 2 > 0

The function is convex.

graph 


4.Check whether the function is increasing and concave in the neighborhood of x0 = 0.

function-behavior-4q
Please log in to view the solution.

5. Given the function y = 2x2 – ln x. Determine for which x the function is decreasing.

Please log in to view the solution.


6. Determine the local extrema of the function y = x2(4 – x )2

Please log in to view the solution.


7. Determine the local extrema of the function y = sin x · (1+cos x)

function-behavior-7q
Please log in to view the solution.

8.Find the stationary points and the intervals of increase and decrease of the function

function-behavior-8q
Please log in to view the solution.


9.For which values of a, b is the point I[1; 3] an inflection point of the function y = ax3 + bx2 ?

Please log in to view the solution.

10. Find the local extrema of the function

function-behavior-10q
Please log in to view the solution.