Right Triangle
1. Define a right triangle.
Solution:
a) Pythagorean theorem:
a
2 + b
2 = c
2
b) Goniometric functions:
c) Perimeter:
O = a + b + c
d) Area:
c) Euclid theorems:
a
2 = c.c
a
b
2 = c.c
b
v
2 = c
a.c
b
2. The catheti of a right triangle ΔABC are a =3 cm, b = 4 cm.
Determine:
a) Size of the hypotenuse c
b) Height perpendicular to the hypotenuse, vc
c) Area S
d) Acute angles α and β
Solution:
For the triangle ΔABC stands: c = 5cm, v
c = 2,4cm, S = 6cm
2, α = 36,87°, β = 53,16°.
3. Let a, b be a right triangles‘ catheti, c a right triangles‘ hypotenuse, α the angle opposite to a.
Fill the table! (Lengths in cm)
Solution:
4.The sides of a right triangle make an arithmetic progression. Determine:
a) perimeter
b) area
of the triangle. Size of the longer cathetus equals 16 cm.
Solution:
a = 16 - x
b = 16
c = 16 + x
(16 – x)2 + 162 = (16 + x)2
256 – 32x + x2 + 256 = 256 + 32x + x2
64x = 256
x = 4
a) Perimeter
a = 12
b = 16
c = 20
O = a + b + c
O = 12 +16+20
O = 48 cm
b) Area
S = 0,5.a.b
S = 0,5.12.16
S = 96 cm2
The perimeter of the triangle is O = 48 cm, the area of the triangle is S = 96 cm2.
5.Sum of the lengths of the catheti of a right triangle is 30 cm. The area of the triangle is 110,5 cm2. Determine the perimeter of the triangle.
Solution:
The perimeter of the triangle is 51,4 cm.
6. The leg of an isosceles triangle is 1 cm longer than it‘s base. The altitude is 2 cm shorter than the leg. Determine the size of the leg of the triangle.
Solution:
z = 16 cm, r = 17 cm, v = 15cm
7. A triangle‘s sides lengths equal a = 4p2- 1, b = 4p, c = 4p2+1. Prove that it‘s a right triangle and that it‘s a Pythagorean triangle. Write out four Pythagorean triangles.
Solution:
If a Pythagorean theorem stands for a triangle, it‘s a right triangle.
The triangle is a right triangle.
Pythagorean triangles:
Proof:
35
2 + 12
2 = 37
2
1225 + 144 = 1369
1369 = 1369
8. Aké stúpanie má cesta, ak na dopravnej značke, ktorá o tom informuje, je napísané 6,7 %? Auto prešlo 2,3 km po tejto ceste.
Aký výškový rozdiel auto prekonalo?
Riešenie:
Uhol stúpania cesty je 3,83°.
Auto prekonalo výškový rozdiel asi 154 m.
9. Vypočítajte obsah rovnoramenného pravouhlého trojuholníka, ktorého obvod je 20cm.
Riešenie:
Obsah trojuholníka je 17,15 cm
2.
10. Pre odvesny pravouhlého trojuholníka platí a:b = 2:3. Prepona má dĺžku 10 cm.
Vypočítajte obvod a obsah tohto trojuholníka.
Riešenie:
Obvod trojuholníka ΔABC je 23,86 cm a obsah 23,045 cm
2.