sk|cz|

Behavior of a function

1. How do we determine the behavior of a function?

Solution:

a.)    The function y = f(x) is increasing at point x0 if f‘(x0) > 0

b.)    The function y = f(x) is decreasing at point x0 if f‘(x0) < 0

c.)    The function y = f(x) has a stationary point at x0 if f‘(x0) = 0

d.)    The function y = f(x) is convex at x0 if f‘‘(x0) > 0

e.)    The function y = f(x) is concave at x0 if f‘‘(x0) < 0

f.)    The function y = f(x) has an inflection point at x0 if f‘‘(x0) = 0 ^ f‘‘(x0) ≠ 0

g.)    The function y = f(x) has a local minimum at x0 if f‘ (x0) = 0 ^ f‘‘ (x0) > 0

h.)    The function y = f(x) has a local maximum at x0 if f‘ (x0) = 0 ^ f‘‘ (x0) < 0


2. Given the function y = x3 – 5x2 + 3x - 5. Determine for which x the function is increasing, decreasing, convex, and concave.

Solution:

function-behavior-2 

function-behavior-2a-g


3.Check whether the function y = x3 -5x2 +3x -5 is decreasing and convex at x0 = 2.

Solution:

y = x3 -5x2 +3x -5

y‘ = 3x2 -10x +3

y‘(2) = 3·22 -10·2 +3

y‘(2) = -5 < 0

The function is decreasing.

y‘ = 3x2 -10x +3

y‘‘ = 6x - 10

y‘‘(2) = 6·2 – 10

y‘‘(2) = 2 > 0

The function is convex.

graph 


4.Check whether the function is increasing and concave in the neighborhood of x0 = 0.

function-behavior-4q

Solution:

function-behavior-4a


5. Given the function y = 2x2 – ln x. Determine for which x the function is decreasing.

Solution:

function-behavior-5n.gif

function-behavior-5g


6. Determine the local extrema of the function y = x2(4 – x )2

Solution:

Local extrema:

function-behavior-6

The function has a local minimum at x1 = 0 and x3 = 4, and a maximum at x2 = 2.

function-behavior-6g


7. Determine the local extrema of the function y = sin x · (1+cos x)

function-behavior-7q

Solution:

function-behavior-7a 

function-behavior-7g

 

8.Find the stationary points and the intervals of increase and decrease of the function

function-behavior-8q

Solution:

function-behavior-8a

function-behavior-8g


9.For which values of a, b is the point I[1; 3] an inflection point of the function y = ax3 + bx2 ?

Solution:

function-behavior-9

function-behavior-9g


10. Find the local extrema of the function

function-behavior-10q

Solution:

function-behavior-10a 

function-behavior-10g