sk|cz|

Derivative of an undeveloped function

1. How do we differentiate an implicit function?

Solution:

Let an implicit function F[x; f(x)] = 0 be given. When differentiating it, differentiate the terms containing only x in the usual way; differentiate the terms with y as composite functions. Multiply their derivative (with respect to y) by y′. Solve the equation for y′.

For example:


derivacia-nerozvinutej-funkcie-1 


2. Differentiate the function:

derivacia-nerozvinutej-funkcie-2z1

Solution:

derivacia-nerozvinutej-funkcie-2r1 


3. Differentiate the function:

derivacia-nerozvinutej-funkcie-2z2

Solution:

derivacia-nerozvinutej-funkcie-2r2


4.Differentiate the function:

derivacia-nerozvinutej-funkcie-2z3

Solution:

derivacia-nerozvinutej-funkcie-2r3


5.Under what angle do the curves x2 + y2 – 5 = 0 and y2 – 4x = 0 intersect?

Solution:

The angle of intersecting curves equals the angle of their tangents at the common point T. Common point T:

derivacia-nerozvinutej-funkcie-3


6.Differentiate the function x3 + y3 − 3axy = 0

Solution:

derivacia-nerozvinutej-funkcie-6.gif


7.Differentiate the function ey + e–x + xy = 0

Solution:

derivacia-nerozvinutej-funkcie-7.gif


8.Compute the first derivative of the function exy − x2 + y3 = 0 at x = 0

Solution:

derivacia-nerozvinutej-funkcie-8.gif


9.Write the equation of the tangent to the circle x2 + y2 + 4x − 4y + 3 = 0 at the point where the circle intersects the x-axis.

Solution:

derivacia-nerozvinutej-funkcie-9.gif


10.Write the equation of the tangent to the curve

derivacia-nerozvinutej-funkcie-10z.gif

Solution:

derivacia-nerozvinutej-funkcie-10r.gif

The equation of the tangent is x − y + 4√2 = 0