sk|cz|

Properties of complex numbers

1.Given complex numbers a = 1+2i , b = 2 – i. Determine a + b, a – b, a·b, a / b, |a|, further

Determine whether the number

a=45i35

is a complex unit.

Solution:

vlastnosti-komplexnych-cisel-2r


2.vlastnosti-komplexnych-cisel-3z

  • a) in trigonometric form
  • b) in exponential form
  • c) calculate a5
  • d) calculate √a

Solution:

vlastnosti-komplexnych-cisel-3r


3.Calculate:

vlastnosti-komplexnych-cisel-4z.gif

Solution:

vlastnosti-komplexnych-cisel-4r


4.Calculate:

vlastnosti-komplexnych-cisel-5z

Solution:

vlastnosti-komplexnych-cisel-5r


5.Find real numbers x , y such that:

(3 – 2i)·x + (5 – 7i)·y = 1 + 3i

Solution:

 vlastnosti-komplexnych-cisel-6


6.Calculate:

vlastnosti-komplexnych-cisel-7z

Solution:

vlastnosti-komplexnych-cisel-7r


7. A square has its center at the origin of the Gaussian plane, one vertex is the image of the complex number a=4 + 3i.

  • a)    Which complex numbers represent the remaining vertices
  • b)    Determine the area of this square

Solution:

vlastnosti-komplexnych-cisel-8


8.Calculate the length of the median tc of triangle ΔABC, if its vertices A,B,C are the images of the complex numbers a = –1 –i , b = –5 + 7i , c = 9 + 8i.

Solution:

The length of the median tc is the length of the segment CS, where S is the midpoint of segment AB

vlastnosti-komplexnych-cisel-9 

The median tc has length 13 u.


9.A regular hexagon ABCDEF has center S at the origin of the Gaussian plane and vertex A at the image of the complex unit on the real axis. Determine the complex numbers whose images are at the other vertices of the hexagon.

Solution:

Vertex A : a = 1

Vertex D : d = –1

The other vertices lie in individual quadrants of the Gaussian plane.

Triangle Δ SAB is equilateral SA = SB = AB = 1

vlastnosti-komplexnych-cisel-10