sk|cz|

Solving equations in the set of complex numbers

1.In the set C solve the equation:

rovnice-v-mnozine-komplexnych-cisel-1z

Solution:

rovnice-v-mnozine-komplexnych-cisel-1r


2.In the set C solve the equation:

rovnice-v-mnozine-komplexnych-cisel-2z

Solution:

rovnice-v-mnozine-komplexnych-cisel-2r


3. In the set C solve the equation:

rovnice-v-mnozine-komplexnych-cisel-3z

Solution:

rovnice-v-mnozine-komplexnych-cisel-3r


4.Which quadratic equation has one root x1 = 1 – i

Solution:

If x1 = 1 – i, then x2 = 1 + i.

rovnice-v-mnozine-komplexnych-cisel-4 


5.Which quadratic equation has roots

rovnice-v-mnozine-komplexnych-cisel-5z

Solution:

The equation with the given roots is 4x2 - 8x + 13 = 0


6.In the set C solve the equation:

x4 – 1 = 0

Solution:

rovnice-v-mnozine-komplexnych-cisel-6


7.In the set C solve the equation:

x6 – 64 = 0

Solution:

rovnice-v-mnozine-komplexnych-cisel-7


8.In the set C solve the equation:

5x3 – 11x2 + 11x – 5 = 0

Solution:

rovnice-v-mnozine-komplexnych-cisel-8


9. In the set C solve the equation x4 – 10x2 = 96. Choose a suitable substitution.

Solution:

rovnice-v-mnozine-komplexnych-cisel-9


10.In the set C solve the equation 5(x – 3)4 + 8(x – 3)2 = 112. Choose a suitable substitution.

Solution:

rovnice-v-mnozine-komplexnych-cisel-10


11.In the set C solve the equation:

rovnice-v-mnozine-komplexnych-cisel-11z

Solution:

rovnice-v-mnozine-komplexnych-cisel-11r


12. In the set C solve the equation x3 – x2 + x = 0. Show that: x1 + x2 + x3 = 1 and x1·x2·x3 = 0

Solution:

rovnice-v-mnozine-komplexnych-cisel-12


13.In the set C solve the equation 16x4 – 81 = 0. Use the trigonometric (polar) form of a complex number.

Solution:

rovnice-v-mnozine-komplexnych-cisel-13


14.In the set C solve the equation x6 + 64 = 0. Use the trigonometric (polar) form of a complex number.

Solution:

rovnice-v-mnozine-komplexnych-cisel-14


15.In the set C solve the equation:

rovnice-v-mnozine-komplexnych-cisel-15z

Solution:

rovnice-v-mnozine-komplexnych-cisel-15r